Apr 25, 2024  
Graduate Catalog 2016 - 2017 
    
Graduate Catalog 2016 - 2017 [ARCHIVED CATALOG]

Course Descriptions


 

Electrical Eng & Computer Science

  
  
  • CIS 650 - Compiler Design

    (3 credits)
    Prerequisites: CIS 505 and 535. Practical overview of the principles involved in the design and construction of translators. Language theory and its relation to push-down automata, parsing methods, finite state machines and lexical methods, including data representation and run-time environments. In-depth coverage of major parsing and syntax-directed translation ranging from top-down recursive-descent methods, including LL(k) and SLL(k), to bottom-up LR methods, including simple LR, canonical LR, and lookahead LR, with exposure to the yacc parser generator tool. Lexical analysis, including regular expressions, finite state machines, and the lex scanner generator tool.


    Click here for the schedule of courses

  
  • CIS 658 - Multimedia Computing

    (4 credits)
    Prerequisite: CIS 506 and CIS 540. Introduces digital capture, representation, processing, and playback of multimedia data, audio, video, and images. Java is used for programming assignments and Java media APIs are studied and used. Commercial products for multimedia capture, editing, and broadcast also are used.


    Click here for the schedule of courses

  
  • CIS 660 - Data Mining

    (4 credits)
    Prerequisites: CIS 530. Must be admitted to the College of Engineering as a degree-seeking graduate student to be eligible for this course. This course will examine data mining methods, technologies, techniques and algorithms. The course will also cover data quality issues, data reduction, data preparation, data pre-processing, model creation, model selection, and model evaluation. Sample data sets will be used to illustrate the course concepts by hands-on experimentation with data mining algorithms implementations and/or by using existing data mining software.


    Click here for the schedule of courses

  
  • CIS 666 - Artificial Intelligence

    (3 credits)
    Prerequisites: CIS 505 and CIS 506. Study of recent AI techniques important for practical applications, including neural networks, genetic algorithms and evolutionary computing, fuzzy systems, and chaotic systems.


    Click here for the schedule of courses

  
  • CIS 667 - Bioinformatics

    (4 credits)
    Prerequisite: CIS 506. An introductory course in biology or chemistry is recommended, but not required. Computational methods for study of biological sequence data in molecular biology. Analysis of genome content and organization. Techniques for searching sequence databases, pairwise and multiple-sequence alignment, phylogenetic methods. Protein structure prediction and modeling, proteomics and the use of web-based bioinformatics tools.


    Click here for the schedule of courses

  
  • CIS 675 - Information Security

    (3 credits)
    Prerequisites: CIS 545. A comprehensive study of security vulnerabilities in information systems and the basic techniques for developing secure applications and practicing safe computing. Topics including common attacking techniques such as buffer overflow, Trojan, virus, and others. UNIX, Windows, and Java security; conventional encryption; Hash functions and data integrity; public-key encryption (RSA, Elliptic-Curve); digital signature; watermarking for multimedia; security standards and applications; building secure software and systems; legal and ethical issues in computer security.


    Click here for the schedule of courses

  
  • CIS 690 - Professional Internship

    (1 credits)
    Prerequisite: Undergraduate and Nondegree graduates ineligible to enroll in 600/700/800 level courses; dept consent required. Work experience in a professional environment. The work performed must extend the academic curriculum and provide a meaningful learning experience in the student’s area of interest. Term paper required.


    Click here for the schedule of courses

  
  • CIS 693 - Special Topics In Computer & Information Science

    (1-4 credits)
    Prerequisite: Varies depending on content. Special topics of current interest in computer and information science. Content varies each offering. May be repeated with change in topic.


    Click here for the schedule of courses

  
  • CIS 694 - Special Topics In Computer & Information Science

    (4 credits)
    Prerequisite: Varies depending on content. Special topics of current interest in computer and information science. Content varies each offering. May be repeated with change in topic.


    Click here for the schedule of courses

  
  • CIS 695 - Special Topics in CIS

    (5 credits)
    Special research projects in computer and information science. Arranged between student and adviser and subject to departmental approval prior to registration.


    Click here for the schedule of courses

  
  • CIS 698 - Independent Study

    (1-4 credits)
    Prerequisite: Undergraduate students, Nondegree graduates ineligible to enroll in 600/700/800 level graduate courses; dept consent required. Study of significant problems in some phase of administration related to the computer industry or computer applications. A written report, suitable for publication in a professional journal, is required. Available only to M.B.A. students taking a computer science concentration.


    Click here for the schedule of courses

  
  • CIS 699 - Master’S Thesis Research In Computer & Information Science

    (3 credits)
    Prerequisite: Departmental approval of written proposal. Research in some area of computer and information science; primarily for students who intend to pursue doctoral studies. Students may register more than once for this course with departmental approval.


    Click here for the schedule of courses

  
  • CIS 754 - Data Communications & Networking

    (4 credits)
    Prerequisite: CIS 545. Data communications: characteristics of physical transmission media, including international standards for data encoding and device interfacing; transmission principles, modems and multiplexors, data link protocols, mechanisms for error detection/correction, and flow control. Computer Networks: broad survey of existing networks; network topology; network layers from the ISO OSI reference model; network programming; analytical tools for network analysis and design.


    Click here for the schedule of courses

  
  • EEC 503 - Writing in Electrical and Computer Engineering

    (1 credits)
    Prerequisites: Graduate standing. This course is designed to enhance the ability of students to write effectively on topics within the discipline of electrical and computer engineering. A substantial written report is one of the requirements. Students enrolled in EEC 503 must be concurrently enrolled in any graduate-level content-based ECE course. This excludes the following courses: Graduate Seminar (EEC 601/701), Electrical Engineering Internship (EEC 602/802), Master’s Thesis (EEC 699), Doctoral Research (EEC 895), and Doctoral Dissertation (EEC 899). After registering for EEC 503, students must obtain a written agreement from the instructor of the content-based course certifying that the instructor will serve as a grader of the writing required in EEC 503. The content course instructor, in consultation with the student, will determine the topic of the written report. This concurrent enrollment requirement can be waived with the prior permission of the instructor.


    Click here for the schedule of courses

  
  • EEC 510 - Linear Systems

    (4 credits)
    Prerequisite: Graduate standing. Fundamental concepts in linear system theory: matrix algebra, linear vector space, linear operator; linearity, causality, relaxedness, and time invariance. Input-output and state-space models. Solutions of linear dynamic equation and impulse response. Characteristics of linear systems: controllability, observability, and stability.


    Click here for the schedule of courses

  
  • EEC 512 - Probability & Stochastic Processes

    (4 credits)
    Prerequisite: Graduate standing. General concepts of probability and random variables, including random experiments, inequalities, joint distributions, functions of random variables, expectations, and the law of large numbers. Basic concepts of random processes and their properties are introduced. Markov process, linear systems with stochastic inputs, and power spectra are presented.


    Click here for the schedule of courses

  
  • EEC 514 - Introduction to Nanotechnology

    (4 credits)
    Prerequisite: Graduate standing. The objective of this course is to expose graduate students to the bourgeoning field of nanotechnology. The course is designed for students from different disciplines of engineering, science and related fields. The course surveys various areas of nanotechnology, including nanoscale materials, fabrication of nanostructures and their characterization techniques, nanoscale and molecular electronics, nanoelectromechanical systems, nanobiotechnology, and safety issues.


    Click here for the schedule of courses

  
  • EEC 515 - Biosensors, Bioelectronics and BioMEMS

    (4 credits)
    Prerequisite: Graduate standing. This course is an introduction to the fields of biosensors, bioelectronics and bioMEMS. The course is designed for students from different disciplines of engineering, science and related fields. It surveys various areas of nanotechnology, including immobilization of biological components to transducers, electrochemical, optical and piezoelectric biosensors, sensor fabrication, miniature sensors and other sensors for biomedical applications, biofuel cells, bioMEMS, and related topics.


    Click here for the schedule of courses

  
  • EEC 517 - Embedded Systems

    (4 credits)
    Prerequisites: Graduate standing. Software design of microcontroller-based embedded systems. Topics include microcontroller architecture; assembly programming; C programming; real-time interrupts; external interrupts; program size considerations; input/output issues; analog-to-digital conversion; serial port reception/transmission.


    Click here for the schedule of courses

  
  • EEC 520 - Semiconductor Device Theory I

    (4 credits)
    Prerequisite: Graduate standing in electrical engineering or permission of instructor. Solid-state physics as applied to electronic devices, semiconductor materials, conduction processes in solids, device fabrication, diffusion processes, and semiconductor devices.


    Click here for the schedule of courses

  
  • EEC 521 - Software Engineering

    (4 credits)
    Prerequisites: Graduate standing. Software process, methods, and tolls; phases of software development process including requirements analysis, engineering, and software project management, metrics, and quality assurance.


    Click here for the schedule of courses

  
  • EEC 522 - Software Systems Modeling and Analysis

    (4 credits)
    Prerequisite: Graduate standing. Software system formal mechanisms, including specification, validation, and verification. Formal specification with algebraic specification and abstraction/reasoning about system properties. Evolution of formalism to model a certain system. Proof of models using analytical methods and experimental methods using simulators.


    Click here for the schedule of courses

  
  • EEC 525 - Data Mining

    (4 credits)
    Prerequisite: Graduate standing. Data mining process, data mining tasks including classification, clustering, association, and prediction; methods and procedures for data mining using machine learning, neural networks, and database techniques; data mining tools, systems, and applications.


    Click here for the schedule of courses

  
  • EEC 530 - Digital Signal Processing

    (4 credits)
    Prerequisite: Graduate standing. Modeling of DSP operations using discrete-time signals and systems: difference equations, Z-transforms, Fourier methods. Signal sampling (A/D) and reconstruction (D/A); digital filters; sample rate converters and oversampling; DFT and spectrum estimation; selected applications. Out-of-class projects completed on DSP equipment in lab.


    Click here for the schedule of courses

  
  • EEC 542 - The Art and Science of Feedback Control

    (4 credits)
    Prerequisites: Graduate standing . This course traces the idea of feedback control throughout history and is made broadly accessible to engineering and science majors alike at both undergraduate and graduate levels. By going back in time and trying to understand the problems that precipitated the great discoveries in controls, we strive to grasp the thought process of the great minds in the history of controls, leading to, hopefully, better understanding and appreciation of the art and science of problem solving in the area of automatic control systems.


    Click here for the schedule of courses

  
  • EEC 560 - Engineering Electromagnetics

    (4 credits)
    Prerequisite:Graduate standing. Fundamental laws of electromagnetic fields: Gauss’s, Faraday’s, Ampere’s, Biot-Savart’s, Ohm’s and Kirchhoff’s voltage and current laws. Maxwell’s equations as applicable to finite and infinitesimal regions in three-dimensional space and their engineering implications. Source distribution and boundary value engineering problems and their analytical or numerical solution. Electromagnetic wave propagation. Applications to the design of transmission lines, waveguides, and antennas.


    Click here for the schedule of courses

  
  • EEC 561 - Electromagnetic Compatibility

    (4 credits)
    Prerequisite: Graduate standing. Methods of electromagnetic coupling between devices, shielding, grounding, frequency spectra of unintentional radiation sources, radiation coupling between distant devices, absorption and reflection losses in nonmagnetic shielding, high-permeability shields, shielding penetration by wires and cables, electromagnetic compatibility (EMC) regulations and measurements.


    Click here for the schedule of courses

  
  • EEC 571 - Power Systems

    (4 credits)
    Prerequisite: Graduate standing. Power system components modeling: transformers, generators, transmission lines. Power flow, economic scheduling of generation, power systems faults, and transient stability.


    Click here for the schedule of courses

  
  • EEC 572 - Power Electronics

    (4 credits)
    Prerequisite: Graduate standing in electrical engineering or permission of instructor. Analysis, performance, characterization, and design of power electronics converters using diodes, thyristors, transistors and other controllable semiconductor switches.


    Click here for the schedule of courses

  
  • EEC 574 - Power Electronics II

    (4 credits)
    Prerequisite: EEC 470. Advanced course in power electronics: switching function representation of converter circuits (DC-DC, AC-DC, DC-AC, and AC-AC), resonant converters, adjustable torque drives, field-oriented motor control, residential and industrial applications, utility applications, power supply applications.


    Click here for the schedule of courses

  
  • EEC 580 - Modern Digital Design

    (4 credits)
    Prerequisite: Graduate standing. Overview of modern digital design methodology and CAD tools, VHDL description for combinational and sequential logic, VHDL description for state machine, VHDL description for RTL design, synthesis and implementation using CPLD/FPGA devices. No graduate credit for students who have completed EEC 480.


    Click here for the schedule of courses

  
  • EEC 581 - Computer Architecture

    (4 credits)
    Prerequisite: Graduate standing. The design of high-performance computer systems, with emphasis on cost-performance tradeoff, performance evaluation, instruction set design, hardwired control-unit design, micro- and nano-programming, pipelining, memory hierarchy, and I/O interfaces.


    Click here for the schedule of courses

  
  • EEC 584 - Computer Networks

    (4 credits)
    Prerequisite: Graduate Standing. Provides a comprehensive overview of computer networks. Topics include network architectures, communication protocols; data link control, medium access control, LANS and MANS: network layer, TCP/IP; and network security.


    Click here for the schedule of courses

  
  • EEC 587 - Rapid Digital System Prototyping

    (4 credits)
    Prerequisite: EEC 580. Experiments and projects utilizing VHDL, modern EDA software tools and CPLD/FPGA devices to design, synthesize, simulate, implement and test combinational circuits, sequential circuits, register-transfer-level systems and processor.


    Click here for the schedule of courses

  
  • EEC 592 - Special Topics in Electrical Engineering

    (1-4 credits)
    Prerequisite: Permission of instructor. Advanced selected topics in electrical engineering. Offered upon sufficient demand.


    Click here for the schedule of courses

  
  • EEC 601 - Graduate Seminar

    (1 credits)
    Prerequisite: Graduate standing. Invited experts from industry and academia present and discuss current issues and trends in research and the professional practice of electrical and computer engineering. Registration may be repeated for credit. Credits earned by registering for this seminar do not fulfill degree requirements. Graded S/F.


    Click here for the schedule of courses

  
  • EEC 602 - Electrical Engineering Internship

    (1 credits)
    Prerequisites: Graduate standing, completion of at least one full time academic year in MSEE, MSSE or Doctor of Engineering program, and permission of advisor. Provides students with practical experience in electrical, computer or software engineering. Students will write progress reports on a regular basis in addition to writing a project report at the end of the course. May be taken up to two times for credit.


    Click here for the schedule of courses

  
  • EEC 620 - Solar Cell Theory II

    (4 credits)
    Prerequisite: Graduate standing in electrical engineering or permission of instructor. Studies solar energy as an alternative form of energy and how organic/polymer cells can harvest this energy. Studies the theory behind organic solar cells and as well as research areas within the field including materials, stability and processing.


    Click here for the schedule of courses

  
  • EEC 621 - Internet Software Systems

    (4 credits)
    Prerequisite: EEC 521. Analyzing, designing, constructing, testing, and maintaining internet-based software systems; hypertext makeup language, Java servlet, Java server pages, Javascript, extensible makeup language (XML), extensible stylesheet language (XSL), XML, schema, document object model.


    Click here for the schedule of courses

  
  • EEC 622 - Formal Methods in Software Engineering

    (4 credits)
    Prerequisite: EEC 521, Software Engineering, or permission of instructor. Software system formal mechanisms, including specification, validation, and verification. Formal specification of concurrent systems using temporal logics. Evolution of formalism to model a certain system. Use of model checking and program verification tools for verification of concurrent software.


    Click here for the schedule of courses

  
  • EEC 623 - Software Quality Assurance

    (4 credits)
    Prerequisite: EEC 521. Software quality, software quality aspects; software quality assurance SQA; SQA components, activities, and infrastructures; cost of software quality; software quality metrics and models; software quality standards.


    Click here for the schedule of courses

  
  • EEC 624 - Software Testing

    (4 credits)
    Prerequisite: EEC 521. Software errors, bug reports, test case design, white box testing, black box testing, unit testing, integration testing, system testing, regression testing, test planning and management.


    Click here for the schedule of courses

  
  • EEC 625 - Software Design & Architecture

    (4 credits)
    Prerequisite: EEC 521. An in-depth look at software design. Study of design patterns, frameworks, and architectures. Survey of current middleware architectures. Design of distributed systems using middleware. Component based design. Measurement theory and appropriate use of metrics in design. Designing for qualities such as performance, safety, security, reusability, reliability, etc. Measuring internal qualities and complexity of software. Evaluation and evolution of designs. Basics of software evolution, reengineering, and reverse engineering.


    Click here for the schedule of courses

  
  • EEC 626 - Software Engineering Project

    (4 credits)
    Prerequisite: MSSE core courses (EEC 521, EEC 623, CIS 634, CIS 635). Students will apply software enginnering principles, methods and tools learned in their course work in building realistic software systems. Students work as small teams in solving real world problems. Students will meet regularly in class and teams meet separately.


    Click here for the schedule of courses

  
  • EEC 640 - Advanced Control System Design

    (4 credits)
    Prerequisite: EEC 510. Systematic approach of applying modern control design methods, such as digital control, adaptive control, and heuristic methods to practical design problems. Practical approaches to typical industrial problems, such as nonlinearity, control saturation, parasitic effects, chattering, etc. Useful stability analysis techniques, such as the Circle Criterion and Popov’s Criterion. Polynomial matrix interpolation and its applications in control and system identification. Design examples and assignments.


    Click here for the schedule of courses

  
  • EEC 642 - System Identification

    (4 credits)
    Prerequisite: EEC 510. Development of dynamic system models from basic laws of physics and identification of model parameters from system input-output measurements. Frequency and time domain models. Design of persistently exciting input signals.


    Click here for the schedule of courses

  
  • EEC 643 - Nonlinear Systems

    (4 credits)
    Prerequisite: EEC 510. State-space and frequency domain analysis and design of nonlinear feedback systems. Methods include Liapunov’s stability analysis, singular perturbations, describing functions, Popov’s and circle criteria. Feedback linearization, variable structure, and sliding mode control.


    Click here for the schedule of courses

  
  • EEC 644 - Optimal Control Systems

    (4 credits)
    Prerequisite: EEC 510. Introduction to the principles and methods of the optimal control approach: performance measures; dynamic programming; calculus of variations; Pontryagin’s Principle; optimal linear regulators; minimum time and minimum fuel problems; steepest descent; and quasilinearization methods for determining optimal trajectories.


    Click here for the schedule of courses

  
  • EEC 645 - Intelligent Control Systems

    (4 credits)
    Prerequisite: EEC 510. Artificial intelligence techniques applied to control system design. Topics include fuzzy sets, artificial neural networks, methods for designing fuzzy-logic controllers and neural network controllers; application of computer-aided design techniques for designing fuzzy-logic and neural-network controllers.


    Click here for the schedule of courses

  
  • EEC 646 - Dynamics and Control of MEMS

    (4 credits)
    Prerequisites: EEC 510 and graduate standing. This course provides a comprehensive overview of MEMS technique and MEMS control. Topics include MEMS fabrication processes, MEMS sensors and actuators, Dynamic modeling of MEMS devices, control, signal processing, and electronics for MEMS, and case studies of MEMS.


    Click here for the schedule of courses

  
  • EEC 647 - Robot Dynamics and Control

    (4 credits)
    Prerequisites: MCE 441/541 or EEC 510 or exposure to undergraduate controls, with instructor consent. Study of robotic manipulator systems, with strong emphasis on dynamics and control. Energy-based nonlinear models. Motion control using PD, inverse dynamics and passivity. Geometric nonlinear control applied to robotic manipulators.


    Click here for the schedule of courses

  
  • EEC 650 - Signal Detection And Estimation

    (4 credits)
    Prerequisite: EEC 512. The classical theory of detection and estimation of signals in noise. Bayesian hypothesis testing, minimax hypothesis testing, Neyman-Pearson hypothesis testing, composite hypothesis testing, signal detection in discrete time, sequential detection. Nonparametric and robust detection parameter estimation, Bayesian estimation, maximum likelihood estimation, Kalman-Bucy filtering, linear estimation, Wiener-Kolmogorov filtering, applications to communications.


    Click here for the schedule of courses

  
  • EEC 651 - Digital Communications

    (4 credits)
    Prerequisite: EEC 512. Basic digital communication techniques, including formatting and baseband transmission, bandpass modulation and demodulation, and synchronization. Advanced modulation techniques, such as power-efficient modulation, spectrally efficient modulation, coded modulation, and spread-spectrum modulation. Introduction to communication link analysis and block codes.


    Click here for the schedule of courses

  
  • EEC 652 - Error Control Coding

    (4 credits)
    Prerequisite: EEC 651. This course introduces the theory of error control coding for digital transmission in communications. Topics include groups, fields, GF(2), linear block codes, cyclic codes, BCH codes, Reed-Solomon codes, convolutional codes, maximum likelihood decoding of convolutional codes, Viterbi algorithm, sequential decoding of convolutional codes, continuous phase modulation codes, trellis coded modulation, and turbo codes.


    Click here for the schedule of courses

  
  • EEC 653 - Information Theory

    (4 credits)
    Prerequisite: EEC 512. This course presents a coherent and unifying view of the concept of information, conveying a unique understanding of how it can be quantified and measured. Within this context, concepts and principles of information theory as they relate to applications in communication theory, statistics, probability theory, and the theory of investment are introduced.


    Click here for the schedule of courses

  
  • EEC 654 - Mobile Communications

    (4 credits)
    Prerequisite: EEC 651. Cellular mobile communication concepts and system design fundamentals, mobile radio propagation models, large-scale path loss, small-scale fading, multipath, modulation techniques for mobile radio, equalization, diversity, channel coding, speech coding, multiple access, wireless networking, wireless systems, and standards.


    Click here for the schedule of courses

  
  • EEC 655 - Satellite Communications

    (4 credits)
    Prerequisite: EEC 651. Satellite channel, satellite link analysis, satellite electronics, frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), frequency-hopped communications, on-board processing, satellite cross-links, VSAT networks, mobile satellite networks.


    Click here for the schedule of courses

  
  • EEC 660 - Nanoscale Solid State Electronics

    (4 credits)
    Prerequisite:EEC 514 or undergraduate course in solid state electronics. The objective of this course is to provide the students with an in-depth understanding of the principles of modern solid state electronic devices. Emphasis is on nanoscale devices and devices made of nanoscale materials. The course begins with a brief review of quantum theory of solids, properties of solid nanostructures, and fundamental principles of conventional electronic devices. In-depth discussion on specific nanoscale devices allows students to gain knowledge in the operational principles of state-of-the-art technology in electronic devices, including hot electron transistors, high electron mobility transistors, resonant tunneling diodes, single electron transistors, and molecular devices.


    Click here for the schedule of courses

  
  • EEC 670 - Power Systems Operations

    (4 credits)
    Prerequisite: EEC 571. Steady-state control of power flow. Optimal generating unit commitment. Frequency/active-power control, voltage/reactive power control. Automation generation of interconnected power systems.


    Click here for the schedule of courses

  
  • EEC 671 - Power Systems Control

    (4 credits)
    Prerequisite: EEC 571. Nonlinear dynamic modeling and control of interconnected power systems in a deregulated environment. Voltage collapse, transient phenomena. Power system stability enhancements, flexible FACTS devices.


    Click here for the schedule of courses

  
  • EEC 673 - Power Electronics and Electric Machines

    (4 credits)
    Prerequisite: EEC 474 or EEC 572. Power electronic converters in combination with electric machines. Field-oriented induction machine control; stability of induction machines under sine-wave supply; voltage source inverter drives and current source inverter drives.


    Click here for the schedule of courses

  
  • EEC 680 - High Performance Computer Architecture

    (4 credits)
    Prerequisite: EEC 581. Architecture analysis and design from a systems perspective. Topics include memory system design, pipeline design techniques, vector computers, multiple processor systems, and multiprocessor algorithms.


    Click here for the schedule of courses

  
  • EEC 681 - Distributed Computing Systems

    (4 credits)
    Prerequisite: EEC 581. Overview of distributed computing systems. Topics include networking, interprocess communication, remote procedure calling, name services, distributed time management, and file services. Some new technologies, including ATM networking, internetworks, multicast protocols, microkernel-based distributed operating systems, and distributed-shared memory, are discussed.


    Click here for the schedule of courses

  
  • EEC 683 - Computer Networks II

    (4 credits)
    Prerequisite: EEC 682. Broadband networks, traffic characterization, admission and access control, switch architectures, congestion control. Emphasis on quantitative analysis and performance modeling.


    Click here for the schedule of courses

  
  • EEC 684 - Parallel Processing Systems

    (4 credits)
    Prerequisite: EEC 581. Overview of parallel system organizations and parallel algorithms. Topics include memory structures for parallel systems, interconnection networks, SIMD/MlMD processing, parallel programming languages, mapping and scheduling, parallel algorithms, and case studies.


    Click here for the schedule of courses

  
  • EEC 687 - Mobile Computing

    (4 credits)
    Prerequisite: EEC 581. This course provides a comprehensive overview of mobile computing, which is likely to become a pervasive part of future computing infrastructures with technical advancements in wireless communication, mobility, and portability. Topics include mobile TCP/IP protocols, mobile ad hoc networks, mobile application architectures, system issues for mobile devices, and some pervasive and ubiquitous computing examples.


    Click here for the schedule of courses

  
  • EEC 688 - Secure and Dependable Computing

    (4 credits)
    Prerequisite: EEC 584. This course provides an extensive overview of secure and dependable distributed computing systems. Topics include computer and network security, faults models, process and data replication, reliable group communication, message logging, checkpointing and restoration, Byzantine fault tolerance and intrusion tolerance.


    Click here for the schedule of courses

  
  • EEC 693 - Special Topics In Electrical Engineering

    (1-4 credits)
    Prerequisite: Permission of instructor. Advanced selected topics in electrical engineering. Offered on sufficient demand.


    Click here for the schedule of courses

  
  • EEC 696 - Individual Problems In Electrical Engineering

    (1-4 credits)
    Prerequisite: Permission of instructor. Directed study on an individual problem under the supervision of a faculty member. Total credits for this course are limited to eight credit hours. Graded S/F.


    Click here for the schedule of courses

  
  • EEC 699 - Master’s Thesis

    (1-9 credits)
    Prerequisite: Graduate standing in electrical, computer or software engineering or permission of instructor. The Thesis/Dissertation proposal approval form must be on file in the College of Graduate Studies prior to enrollment. Research under the guidance of a faculty member, culminating in the writing of a thesis.


    Click here for the schedule of courses

  
  • EEC 720 - Solar Cell Theory II

    (4 credits)
    Prerequisite: Graduate standing in electrical engineering or permission of instructor. Studies solar energy as an alternative form of energy and how organic/polymer cells can harvest this energy. Studies the theory behind organic solar cells and as well as research areas within the field including materials, stability and processing.


    Click here for the schedule of courses

  
  • EEC 721 - Internet Software Systems

    (4 credits)
    Prerequisite: EEC 521. Analyzing, designing, constructing, testing, and maintaining internet-based software systems; hypertext makeup language, Java servlet, Java server pages, Javascript, extensible makeup language (XML), extensible stylesheet language (XSL), XML, schema, document object model.


    Click here for the schedule of courses

  
  • EEC 722 - Formal Methods in Software Engineering

    (4 credits)
    Prerequisite: EEC 521, Software Engineering, or permission of instructor. Software system formal mechanisms, including specification, validation, and verification. Formal specification of concurrent systems using temporal logics. Evolution of formalism to model a certain system. Use of model checking and program verification tools for verification of concurrent software.


    Click here for the schedule of courses

  
  • EEC 723 - Software Quality Assurance

    (4 credits)
    Prerequisite: EEC 521. Software quality, software quality aspects; software quality assurance SQA; SQA components, activities, and infrastructures; cost of software quality; software quality metrics and models; software quality standards.


    Click here for the schedule of courses

  
  • EEC 740 - Advanced Control System Design

    (4 credits)
    Prerequisites: EEC 440 and EEC 510. Systematic approach of applying modern control design methods, such as digital control, adaptive control, and heuristic methods, to practical design problems. Students learn how to deal with typical industrial problems, such as nonlinearity, control saturation, parasitic effects, chattering, etc. Useful stability analysis techniques, such as the Circle Criterion and the Popov’s Criterion. Polynomial matrix interpolation and its applications in control and system identification. Design examples and assignments.


    Click here for the schedule of courses

  
  • EEC 742 - System Identification

    (4 credits)
    Prerequisite: EEC 510. Development of dynamical system models from the basic laws of physics and identification of model parameters from system input-output measurements. Frequency and time domain models.


    Click here for the schedule of courses

  
  • EEC 743 - Nonlinear Systems

    (4 credits)
    Prerequisite: EEC 510. State-space and frequency domain analysis and design of nonlinear feedback systems. Methods include Liapunov’s stability analysis, singular perturbations, and describing functions. Feedback linearization, variable structure, and sliding mode control.


    Click here for the schedule of courses

  
  • EEC 744 - Optimal Control Systems

    (4 credits)
    Prerequisite: EEC 510. Introduction to the principles and methods of the optimal control approach; performance measures; dynamic programming; calculus of variations; Pontryagin’s Principle; optimal linear regulators; minimum time and minimum fuel problems, steepest descent, and quasilinearization methods for determining optimal trajectories.


    Click here for the schedule of courses

  
  • EEC 745 - Intelligent Control Systems

    (4 credits)
    Prerequisite: EEC 510. Artificial intelligence techniques applied to control system design. Topics include fuzzy sets, artificial neural networks, methods for designing fuzzy-logic controllers and neural network controllers; application of computer-aided design techniques for designing fuzzy-logic and neural-network controllers.


    Click here for the schedule of courses

  
  • EEC 746 - Dynamics and Control of MEMS

    (4 credits)
    Prerequisites: EEC 510 and graduate standing. This course provides a comprehensive overview of MEMS technique and MEMS control. Topics include MEMS fabrication processes, MEMS sensors and actuators, Dynamic modeling of MEMS devices, control, signal processing, and electronics for MEMS, and case studies of MEMS.


    Click here for the schedule of courses

  
  • EEC 747 - Robot Dynamics and Control

    (4 credits)
    Prerequisites: MCE 441/541 or EEC 510 or exposure to undergraduate controls, with instructor consent. Study of robotic manipulator systems, with strong emphasis on dynamics and control. Energy-based nonlinear models. Motion control using PD, inverse dynamics and passivity. Geometric nonlinear control applied to robotic manipulators.


    Click here for the schedule of courses

  
  • EEC 750 - Signal Detection & Estimation

    (4 credits)
    Prerequisite: EEC 512. The classical theory of detection and estimation of signals in noise. Bayesian hypothesis testing, minimax hypothesis testing, Neyman-Pearson hypothesis testing, composite hypothesis testing, signal detection in discrete time, sequential detection. Nonparametric and robust detection, parameter estimation, Bayesian estimation, maximum likelihood estimation Kalman-Bucy filtering, linear estimation, Wiener-Kolmogorov filtering, applications to communications.


    Click here for the schedule of courses

  
  • EEC 751 - Digital Communications

    (4 credits)
    Prerequisite: EEC 512. Basic digital communication techniques, including formatting and baseband transmission, band pass modulation and demodulation, and synchronization. Advanced modulation techniques, such as power efficient modulation, spectrally efficient modulation, coded modulation, and spread-spectrum modulation. Introduction to communication link analysis and block codes.


    Click here for the schedule of courses

  
  • EEC 752 - Error Control Coding

    (4 credits)
    Prerequisite: EEC 751. Groups, fields, GF(2m), linear block codes, cyclic code, convolutional codes, maximum likelihood decoding of convolutional codes, Viterbi algorithm, sequential decoding of convolutional codes, continuous phase modulation codes, trellis coded modulation.


    Click here for the schedule of courses

  
  • EEC 753 - Information Theory

    (4 credits)
    Prerequisite: EEC 512 or equivalent. Presents a coherent and unifying view of the concept of information, conveying a unique understanding as to how it can be quantified and measured. Within this context, concepts and principles of information theory as they relate to applications in communication theory, statistics, probability theory, and the theory of investment are introduced.


    Click here for the schedule of courses

  
  • EEC 754 - Mobile Communications

    (4 credits)
    Prerequisite: EEC 751. Cellular mobile communication concept and system design fundamentals, mobile radio propagation models, large-scale path loss, small-scale fading and multipath, modulation techniques for mobile radio, equalization, diversity, channel coding, speech coding, multiple access, wireless networking, wireless systems and standards.


    Click here for the schedule of courses

  
  • EEC 755 - Satellite Communications

    (4 credits)
    Prerequisite: EEC 751. Satellite channel, satellite link analysis, satellite electronics, frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), frequency-hopped communications, on-board processing, satellite cross links, VSAT networks, mobile satellite networks.


    Click here for the schedule of courses

  
  • EEC 760 - Nanoscale Solid State Electronics

    (4 credits)
    Prerequisite:EEC 514 or undergraduate course in solid state electronics. The objective of this course is to provide the students with an in-depth understanding of the principles of modern solid state electronic devices. Emphasis is on nanoscale devices and devices made of nanoscale materials. The course begins with a brief review of quantum theory of solids, properties of solid nanostructures, and fundamental principles of conventional electronic devices. In-depth discussion on specific nanoscale devices allows students to gain knowledge in the operational principles of state-of-the-art technology in electronic devices, including hot electron transistors, high electron mobility transistors, resonant tunneling diodes, single electron transistors, and molecular devices.


    Click here for the schedule of courses

  
  • EEC 770 - Power Systems Operations

    (4 credits)
    Prerequisite: EEC 571. Steady-state control of power flow. Optimal generating unit commitment. Frequency/active-power control, voltage/reactive power control. Automation generation of interconnected power systems.


    Click here for the schedule of courses

  
  • EEC 771 - Power Systems Control

    (4 credits)
    Prerequisite: EEC 571. Nonlinear dynamic modeling and control of interconnected power systems in a deregulated environment. Voltage collapse, transient phenomena. Power system stability enhancements, flexible FACTS devices.


    Click here for the schedule of courses

  
  • EEC 773 - Power Electronics & Machines

    (4 credits)
    Prerequisite: EEC 474 or EEC 574. Power electronics converters in combination with electric machines. Field-oriented induction machine control; stability of induction machines under sine-wave supply; voltage source inverter drives and current source inverter drives.


    Click here for the schedule of courses

  
  • EEC 780 - High Performance Computer Architecture

    (4 credits)
    Prerequisite: EEC 581. Architecture analysis and design from a systems perspective is described in this course. Topics include memory system design, pipeline design techniques, vector computers, multiprocessor systems, and multiprocessor algorithms.


    Click here for the schedule of courses

  
  • EEC 781 - Distributed Computing Systems

    (4 credits)
    Prerequisite: EEC 581. Overview of distributed computing systems. Topics include networking, interprocess communication, remote procedure calling, name services, distributed time management, and file services. Some new technologies, including ATM networking, internetworks, multicast protocols, microkernel-based distributed operating systems, and distributed shared memory, are discussed.


    Click here for the schedule of courses

  
  • EEC 783 - Computer Networks II

    (4 credits)
    Prerequisite: EEC 782. Broadband networks, traffic characterization, admission and access control, switch architectures, congestion control. Emphasis on quantitative analysis and performance modeling.


    Click here for the schedule of courses

  
  • EEC 784 - Parallel Processing Systems

    (4 credits)
    Prerequisite: EEC 581. Overview of parallel system organizations and parallel algorithms. Topics include memory structures for parallel systems, interconnection networks, SIMD/MIMD processing, parallel programming languages, mapping and scheduling, parallel algorithms, and case studies.


    Click here for the schedule of courses

  
  • EEC 786 - Advanced Digital Design

    (4 credits)
    Prerequisite: EEC 581. Covers advanced topics in digital systems, including verification and simulation, test vector generation, logic synthesis, behavioral synthesis, and design and development of data path and control path.


    Click here for the schedule of courses

  
  • EEC 787 - Mobile Computing

    (4 credits)
    Prerequisite: EEC 484. This course provides a comprehensive overview of the mobile computing that is likely to become a pervasive part of future computing infrastructures with technical advancement in wireless communication, embeded processors and portability technologies. Topics include mobile TCP/IP protocols, mobile ad hoc networks, mobile application architectures, system issues for mobile devices and some pervasive and sensor computing examples.


    Click here for the schedule of courses

  
  • EEC 788 - Secure and Dependable Computing

    (4 credits)
    Prerequisite: EEC 584. This course provides an extensive overview of secure and dependable distributed computing systems. Topics include computer and network security, faults models, process and data replication, reliable group communication, message logging, checkpointing and restoration, Byzantine fault tolerance and intrusion tolerance.


    Click here for the schedule of courses

  
  • EEC 793 - Special Topics in Electrical Engineering

    (1-4 credits)
    Prerequisite: Permission of instructor. Advanced selected topics in electrical engineering. Offered on sufficient demand.


    Click here for the schedule of courses

 

Page: 1 <- 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16Forward 10 -> 25